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ORDER AND CHAOS

IN

POLARIZED NONLINEAR OPTICS

Darryl D. Hohn
Theoretical Division and Cerwr for Nonlinear Studies,

Los A!amos National Laboratory, MS B284
LOS Aiamos, NM 87545

Abstract
Methods for investigating temporal complexity in Hamiltonian systems are applied to the dynamics
of a polarized optical laser beam propagating as a traveling wave in a medium with cubically
nonlinear polarizability (i.e., a Kerr medium). The theory of Hamiltonian systems with symmetxy
is used to study the geometry of phase space for the optical problem, transforming from C? to
S2X(J,fl), where (J,O is a symplectic action-angle pair, The bifurcations of the phase portraits of
the Hamiltonian motion on S2 are classified and shown graphically. These bifurcations create
various saddle connections on S2 as eLtherJ (the beam intensity), or the optical parameters of the
medium are varied, After this bifurcation anal ysis, the Melnikov method is used to demonstrate
.malytically that the saddle connections break and intersect transversely in a Poincati map under
spatially periodic perturbations of the optical parameters of the medium, These transverse
interactions in th: Poincar@map imply intermittent polarization switching with extreme sensitivity
to initial conditions characterized by a Smalc horseshoe construction for the traveling waves of a
polarized optical laser pulse, The resulting chaotic behavior in the form of sensitive dependence on
ini~ia; conditions may have implications for the control and prc4ictability of nonlinear optical
pokuvzaaon twitching in birefringent rrw.ia.



~1 Introduction

Complexity arising from prmdic Perturbatims of integrable Hamiltonia~~ systems often

appe?tis as horseshoe chaos, and is characterized as the limit set of intersections of phase space

regions resulting from iterating the Smale horseshoe map. In two-dimensions, the Smale

horseshoe map first stretches and folds a rectangular region in phase space into a horseshoe shape

of the same area; next the map overlays the horseshoe onto the original rectangle and then takes the

intersection. Iterating the horseshoe map repeats this stretching, folding, and intersection process:

the two rectangular regiom comprising the intersection of the first horseshoe with the original

region iterate under the map to make four regions of intersection, iterate again to make eight, and

sc forth, In the limit, the horseshoe map Iterates to produce an invariant Cantor-like set, i.e., a

fractal set in phase space called a Smalc horseshoe. The dynamics of the horseshoe map on its

invariant set can be associated to symbolic shifts. Such shifts produce sensitive dependence on

initial cortditioris, which is the hallmark of chain. To see intuitively how this sensitive dependence

arises, think of each initial condition as the fractional part of a binary number. An iteration of the

horseshoe map produces the fractional part of the binary number obtained from the initial one by

shifting the “decimal point” one place to the right, Thus, after n itemaons the subsequent motion

depends on details of the initial condition from beyond its n-th significant figure!

For the periodically perturbed Hamiltonian system considered in this lecture, the Smale

horseshoe map is obtained via a Pomcti map, here the time T map of the perturbed phase space

orbit, where T is the period of the perturbation. A method due to Melnikov [ 1963] and Arnold

[1964], and developed funhcr by Holmes and Marsden [1982] and Wiggins [1988], is used to

establish analytically that iterating the Poincard map for the perturbed system produces trarwerse

intersections of the stab!e and unstable manifolds of the perturbed homoclinic point~, Each

transverse intersection is an unstable homoclmic point of the perturbed Poincar4 map and is an

unstable periodic orbit of the perturbed system. The Poincar4Birkhoff-Smale homoclinic theorem

is ~hen invoked to assert the existence, near any peti,urbed transverse homociinic point, of an

invariant Cantor-like se, on which some power of the Poincar4 map for the perturbed system

corresponds to a shift on two symbols, thereby implicating the Smale horseshoe map as the

mechanism for chaos, See Wiggins [1988] for explanations and examples of horseshoe chmm as

well as references and discussions conccming the original mathematical development of this field,

lr~the !’vlelnikov.Amold method, t.ransvemc intersections are shown to exist by establishing

for each homoclinic point of the unperturfxd system that the (signed) distiince

pcrturhatlon thxmy between its stable and unstable n)anifoids develops ~irnple

in first order

zeroes under
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petnrbation. (Under small enough perturbations the original homoclinic point displaces slightly,

but it continues to exist as a hyperbolic critical point.) Thus, establishing the zeroes of this signed

distance (which is usually called the Melnikov function) allows one to conclude that the Poincare

map for the perturbed problem contains the processes of stretching, folding and intersecting

necessary to produce an invariant Cantor set under iterations of the map. There are an infinite

number of these zeroes of the Melnikov function for the perturbed Poincare map, and each one

corresponds to a transverse intersection of the stable and unstable manifolds of the perturbed

‘omoclinic point. In turn, each of these intersections corresponds to an unstable periodic orbit,

around which further transverse intersections can develop in principle, resulting in exquisitely

complex dynamics, even for the perturbed Hamiltonian systems in only two dimensions plus time

(one and a half degrees of freedom).

For higher degrees of freedom (i.e., in higher dimensions), resonance overlaps and Arnold

webs ctm develop, leading to even richer complexity. While horseshoes and their higher-

dimensionai counterparts are not strange attractors (since we are dealing only with Harniltonian

systems here), they do have quantifiable mixing and transport properties, and they often behave

like strange attractors in numerical simulations (perhaps because of dissipation and noise due to

round-ofo.

The complex dynamics we discuss in this lecture appears in a physical application: the

Hamiltonian description of the traveling wave dynamics of a polarized, nearly monochromatic,

optical laser pulse propagating in a Iossless, cubically nonlinear, parity-invariant, anisotropic,

homogeneous medium (for instance, a polarized beam in a straight optical fiber). Our appoach

combines methods of reduction of phase space dimension for Hamiltonian systems possessing

continuous symmetry gtoups together with the method of Arnold and Melnikov for showing the

existence of complex behavior under small perturbations of integrable dynamical systems. This

approach provides a unified and geomerncal view of the qualitative properties of polariz~tion

dynamics (e.g., phase portraits, bifurcations, and special solutions) while at the same time

showing hat this physical application possesses complex dynamics under conservative spatially-

periodic peflurbaaons of the material parameters of the medium.

“I%eplan of the lecture is as follows. In Section 2 we begin by casting the dynamics (Born

and Wolf [ 1986j) of polarized travelllng-wave optical pulses into Hamiltonian form, ill terms ot’

two complex electric field amplitudes (one amplitude for each linear polw-iztition in the plane

transverse to the direction of propagation), Next we use the method of reduction for Htimiltonitin

systems with symmetry to transform to the Stokes representation of poliuization dynurnius,
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Invariance of the polarization dynamics Hamiltonian under sitmitaneous changes of phase of the

two complex elecrnc field amplitudes leads to conservation of an action variable, J, conjugate to the

phase angle, 0. This ‘action variable is the total beam intensity (i.e., the sum of squares of the

ampltudes of the two linear polarizations). We perform the reduction process iil two steps: from

C~ to S3XS1, first, and then to Szx(J,e). The first reduction gives a geomernc picture of the

dynamics as taking place along intersections of level surfaces of constants of motion in 33, whale

the second reduction gives phase portraits on the Poii~car4 sphere, S2, a level surface of the

conserved beam intensity, J, In Section 3 we classify the various fixed points of ~he reduced

dynamics on the Poincar4 sphere and describe the bifurcations which take place there as the

material parameters and intensity of the light are varied. On this sphere, we find hyperbolic fixed

points connected among themselves by homoclinic and heteroclinic orbits. These homoclinic and

heteroclinic orbits arc separatriccs (i.e., staule and unstable manifolds of hyperbolic fixed points)

which separate regions on Sz having different types of piodic behavior in the travelling-wave

frame. For the particular case of a medium whose birefringencc is isotropic, we present the

complete bifurcation dia~ of how these separatrices reconnect among themselves as the beam

intensity is varied, In Section 4 wc usc the Mclnikov method to determine thai the separatrices

tangle and break up into stochastic layers whose Poincar4 map is characterized by a Smale

horseshoe, under spatially periodic perturbations of the material parameters of the medium. The

conclusions of this study are summarized in Section 5.

92 Hamiiionian Formulation of the Problem

Nonlinear polarization dynamics of optical laser pulses has been studied for ~bout three

decades, basically since the invention of the laseT, Maker ef L~f,[1964] demonstrated the precession

of the polarization ellipse for a single beam propagating in a nonlinear medium. Studies of

polarization bistability in isotropic media and computer simulations suggesting chaotic behavior can

lx found in Otsuka et af, [1985] and Gacta er al, [ 1987]. For additional references and more

detiiileo treatments of Hamiltonian chaos in nonlinear optical polarization dynamics see David,

Holrn and Tratnik [ 1989a,b,1990].

Propagation of an optical traveling wave pulse in a cubically nonlinear medium is

described by the fdkwing syswm of equations (Rloembergen 11965], Shen [19841)



d
i— e. = #)e~ + 3X~mekele*m*
dr J

(2.1)

where f is the independent variable for traveling waves, j,k,l,m = 1,2, and the complex two-

vector e = (ei, e2)Te 1? reFnxmts the elecrnc field amplitude. The complex susceptibility tensors

x[l)j~ and ~(3JJklrnpuamernze ‘he lineU and ‘Onlineti pO1tizability! ‘espectively” ‘M ‘rem
resonance and in a lossless medium, the susceptibility tensors are constant and Hermitian in each

e-e” pair and %(s)possesses a permutation symmetry:

Hence, we may write the system (2.1) in Hamiltonian form as

~efh = [ej, H)C, = -i~H/~e*j,

H-=
(1)

“jxjk ‘k +

(3)
~e*.e ~.z j k jdmeleom”

(2.3)

In addition, the intensity, r = Iell = Iellz + le21~,is consetved. We introduce the three-component

Stokes vector, u, given by (WCDavid, Helm, and Trataik [1990]) u = e~*(@Jkek, with ~ = (CTl,

cr2,Gl), the standan ! Pauli marnces. The traveling wave equation (2.1) then becomes

du
—= (b+ Wu)xu, b=a+lulc=a+rc,
dz

whrre the constant vectors a and C, and the constant symmernc

(2.4)

tensor W, are given by

a
(1) ~

= (o)~jxjk ,

(3)
= ~(” )~j~jk~l?

llIe material parameters a, c, and W arc all real, According to equation (2,5), the parameters a and

c represent the effects of linear and nonlinear anisotropy, respectively. Thcy Icad to precession of

the Stokes vector u with (vector) frequency b, The tensor W is symmetric, so a pokwizittion basis

may always be assumed in which W is diagonal, W = (kl, kz, )L3),in analogy to the principal

moments of inertia of a rigid body,
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Ir, terms of the Stokes parameters, u, the Hamihonian function H in equation (2.5) may

be rewritten as

H= b”u+~u” Wu (2.6)

and the equations of motion (2.9) may be expressed in Hamiltonian form as du/dz = (u, H), by

using the Lie-Poisson bracket (F, G ) := u . VF(U) x VG(U) written in rnple scalar product form,

just as in the case of the rigid body. The intensity r = IuI is the Casimir function for this Lie-

Poisson bmcket. That is, the intensity r Poisson-commutes with all functions of u when the above

Lie-Poisson bracket is used; so r in the Stokes description of lossiess polarized optical beam

dynami~s may be regarded simply as a constant parameter. (See Helm, et al. [1985], for

discussions and references concerning Lie-Poisson brackets and their usage, for example, in the

study of Lyapunov stability of equilibrium solutions of dynamical systems.)

Solving the system (2.4) when (a) two eigenvalues of W coincide, and (b) one or more

of the components of b vanish, can be done ea$ily for two cases which are inequivalent under

cyclic permutations of indices of u. h the fwst case, we set W = odiag( 1, 1, 2) and b = (b,, ~,

O); equations (2.4) then read

dul/d7 = (b2 - 6)U2)U3, du#z = (W.+ - bl)u3, du~d~ = b1u2 - b2u1.

Hence, a Duffing equation emerges for U3,

d2u3/dz2 = AU3(B- U;),

2(b: + bj)
,4=~t.02, B=~~- r2-

0) “2

(2.7)

(2.8)

Tlte other two components of u may be determined algebraically from the two constants of motion

r and I-i, When B i]irreases through zero, ihe Duffing equation (2.8) develops a pair of orbits,

homoclinic to the !:xed point U3 (see, e.g., Guckenhcimer and Holmes [ 19M31and Wiggins

[ 1988]) Likewise, in the second case, we set W = tiiag(l, 1, 2) and b = (b], O, ~); equations

(24) then become

(5



dulld~ = ‘b3u2 - ‘U2U3’

Hence, provided bl #0,

- ‘1

du~d~ = o)u1u3+b3u1-b1u3, du3/dz=b1u2.

we find

- 2

(2.9)

d’u3/d~’ = A’ + B’u3 + C’U; + D’u’~,

A’ = b3(H - ~ @r*), B’ = COH
* (2.10)

22- b~-b~, C’=-$wb3, D’=-~co.-~wr

Thus, the polarization dynamics for this case reduces to the motion of a particle in a quaxtic

potential, whose solution is expressible in terms of el!!ipticintegrals. .Again, the.components U1and

U2may be determined algebraically from :he two constants of motion, r and H. We shall return to

these two cases later, when we discuss the effects c~fperturbations. For now, these cases suffice to

demonstrate that the system (2.4) possesses bifurcations in which homoclinic orbits are created.

The system of equations (2,9) further reduces the Poincar6 sphere ~ of radius r upon

transforming to spherical coordinates (ul, U2,US)= (rsinesing, rcose, rsin(3cos(p). In these

coordinates, the reduced Hamiltonian function (2.6) and the symplectic Poisson bracket on ~ are

expressible as

H = ~ r2[(~1sin2v + ~3cos2~)sin2e + ~2COS291+ rsine(b 1sin~ + b3cosv) + b2rcose!
1 aF aG 1 aG ~F (2.11)

(F, G) :=–—— - –——.
r &p acose r a~ac0d3

and the equations of motion are

dWd%= blcos~ - b3sin(p + (~1 - 13)rsin9cos~sinq,
(2.12)

dqYdT= b2 - (blsinq + b3cos~)cot8 - r(h1sin2q + L3COS2V- A2)cos6.

The system (2.9) is completely ‘integmble, since it is a one-degree-of-freedom Harniltonian system,

Its solutions are expressible in terms of elliptic integrals.

7



.
53 Bifurcation analysis

We now specialize to the case of a non-parity-invariant material with C4 rotation

symmetry about the axis of propagation (the z-axis), for which material constants take the form W

= (Xl, i2, L3) and b = (O, b2, O). (See David, Helm, and Tratnik [19901 for details of wl~at

follows.) We also introduce the following parameters

(3 1)

In this case, the Hamiltonian in (2.11) and the equations of motion become

H= ~p[(r2 - U?COS2qI+ lu2 + 2~ru] + ~k1r2, (3.2a)

du/d~ = g(r2 - ~u cospsimp, (3.2b)

dqddl = p[~r - (cos2~ - L)u], (3.2c)

where u s rcosf3. We construct the phase portrait ~f the system and explain how this portrait

changes as the parameters in the equations vary, The freed points of (3.2b, c) are easily located and

classified using standard techniques. We list “Aemin the Table, for u #O. The special case where

w = O, i.e., L3 = AI, requires a separate analysis, In that case, the right-hand side of (1.4a)

vanishes identically so that the set of fixed points of the system is the circle COS6= b2/r(~ - kl ) =

wk. The phase portrait depends on two essential parameters, ~ and ~, or equivalently, ~ -k, and

b2/r. Bifurcations of the phase portrait occur when the inequality constraints in the third column of

the Table become equalities; hence wc observe that the pairs of fixed points (F, B) and (L, R)

appear or vanish as the lines ~ = M 1- i) and ~ = fi are crossed in the (k, ~) parameter plane (see

Figure 1),

8



Fixed Point Cooniinates / constraint Center

I

F (p=f) co$3=~(l -1)

p<(l. kp A>l a<l
B q=n CO*~=p4(-1- 1)

T

L q=lu2 03s0= *A

p<kz A<o a>o
R P = -it/2 a)sfl= MA

A

N WS2Q=k+~ e=o ~- j3E(-k, l-1) pe(-~,l -k)

s &p=A-~ (3=X f3E(A-l, A) p~(k-l, k)

Table.The&d points of system (3.2)and their types.

Figure 1, Theparameterplaned its biflucation lines,
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8 The (k, ~) parameter plane is partitioned into nine distinct regions separated by four critical lines

that intersect in pairs at four points. Typical phase portraits corresponding to each of these regions

are shown in Figure’ 2. Note that the phase portraits

invariant under the following discrete transformations:

(p+(ptn;

(p+(pifi/2, k+l-k, p+-p;

of the unperturbed system (3.2b,c) are

(p+(pin,e +n-e, p+ -~;

(p+q*lt/2, A+l-k, e--+x-e.

Thus, as far as the configurations of &tical orbits on the phase sphere are concerned, it will be

~ufflcient to consider the quarter plane given by A c 1/2 and ~ >0, i.e., to resrnct attention to

regions 1, 2,4, and 5. Although no bifurcations occur when the i-axis (~ = O in the parameter

plane) is crossed (except for I = O, and k = 1, the set of fixed points does not change), this line is

nevertheless special. Indeed, in the interval k ~ (O, 1), i.e. within region R5, both poles are

hyperbolic, each one of them being attached to a pair of homoclinic loops. When ~ vanishes, these

homoclinic loops merge together so as to form four hcteroclinic lines (and thus four heteroclinic 2-

cycles) connecting the north and south poles together. On the A-axis the polarization dynamics

reduces to that of the rigid body. In that case, the phase portrait consists of the poles N and S, and

the four other points are located on the quator of Sz (this contlguraaon of fixed points disrnbuted

on the equator is obtained only on this line). Two of these, (N, S) or (F, B) or (R, L), are unstable

while the other four are stable; ~~hichpair is unstable is decided by the value of A = (k2 - kl )/(k3 -

Ll). The pair (F, B) is nypeholic when k <O, (N, S) are hyperbolic when 0< k <1, and (R, L)

are hyperbolic whenever k > 1; in each of these cases, the unstable direction is specified by the ki

wnich is neither the least nor the greatest among the three.

10



Bifurcations taking place as the beam intensity is varied are those occuring along a ve~~ical line in

r~e p~~e[erplane; we present a Ii St of the seven possible sequences (See David, Holrn, and

Tratnik [1990] for an exhaustive list of the bifurcations that may take place in the phase phase

when traveling along these lines):

j4 Homoclinic chaos.

In this section, we consider spatitdly periodic modulations of either the circuhir-circular

polarization self-interaction coefficient ~ in W or dle optical activity ~. In each case, when the

unperturbed medium satisfies the additional condition ~ = ~, the Melnikov technique (Melnikov

[1963], Guckenheimer and Holmes [1983] and Wiggins [1988]) leads to an analytically

manageable integral for the Melnficov function, which is shown to have simple zeros. In this way,

horseshoe chaos is predicted in the dynamics of the single Stokes pulse. We also discuss

physics! implications for measuring this horseshoe chaos in an experimental situation.

We concentrate on the north pole U2= 1, ~ = (pO,with Cos%po= k + ~, and evaluate

conserwd Hamiltonian at this point to fmd a relation between u and q on the homoclinic orbit,

U2= -r - 2b#(cos2(p - k), (4,1)

which, when substituted into the quaaon of motion for q, gives

dqYd~= ~r(cos2q - COS*(pO),

Upon integrating (4,2) we obtain (with z = z + vt, the travelling-wave variable)

(4.2)

the

the



tamp = tanq#a.nh(~r), ~ = ~lrsin(2qO). (4.3)

Substituting this formula into (4. i) gives an analytical expression for u on the homoclinic orbit:

2b2[1- cos2(pOsech2(~r)]

‘2=-r-
#(cos2qOtanh2(~@ - L[l - cos2(pOsech2(~~)]) “

(4.4)

We consider a periodic perturbation of the eigcnvalue ~ and the optical activity b2, that

is,

i z’ = k2 + EICOS~VZ), b2’ = b2 + E2COS(VZ), (4.5)

where E~,2 << 1 and v k the modulation frquency. Then from (2.6) the perturbation Hamiltonian

is

H’=’ ; U2(E1U2-t 2E2)COS(VZ), (4.6)

and we easily calculate the Poisson bracket of this perturbation with the unperturbed Hamihonian:

(HO,H]) = -ysinqcos~(r2 - U2)U2COS(VZ), (4.7)

which when formally integrated becomes the Melnikov function

JM(to) = v sin~~)cos~f)[r2 - U2(Z)](E1U2 + E2)cos[v(z - fO)]d’c, (4.8)

R

where %0= vt, In the particular case ~ = k3, this integrable is manageable and can be found in

standard tables, Hence,

13



2

M(TJ =
4
*W r(&lr+E2) + 3 1 12Er2[cos2(p0+ (v/2b2)21 csch[vx/~rsin(2 ~~]sin(v7& (4.9)

b2-

which clearly has simple zeros as a function of To, implying horseshoe chaos (see. e.g.,

Guckenheimer and Holmes [1983] and Wiggins [1988]). When the Melnikov function has simple

zeros, the dynamical evolution of a rectangular region near the homocli ~icpoint shows (under

iteration of the Poincar4 map induced from the periodic perturbation) that the region is folded,

stretched, contracted, and eventually mapped back over itself in the shape of a horseshoe. This

horseshoe map is the underlying mechanism for chaos. As the horseshoe folds and refolds, the

recianguiar region of phase points initially lying near the homoclinic point develops a Cantor set

structure whose associated Poincar& Map can be shown to contain countably many unstable

periodic motions, and uncountably many urstable nonpcriodic motions. (See Guckenheimer and

Holmes [1983] and Wiggins [1988] for the methods uf proof of these statements and further

desixiptions of homochnic tangles.)

~5 Conclusions,

PhysicaEy, the horseshoe chaos in the case of a periodically perturbed single Stokes

pulse corresponds to intermittent switching from one elliptical polarization state, to another one

whose semimajor axis is approximately orthogonal to that of the first state, with a passage close to

the unstable circular polarization state during each switch. This intwrnittcncy is realized on the

Poincd sphere by an orbit which spends most of its time near the unperturbed figure eighr shape

with a (homoclinic) crossing at the north pole (circular polarization) in Figure 2. Under periodic

perturbations of either the W -eigenvalues or the optical activity b2, this orbit switches

deterministically, but with extreme sensitivity to the initial condiuons, from one lobe of the figure

eight to the other each time it returns to the crossing region near the north pole where the

homoclinic tangle is located. TtiM, for the one-beam problem wc predict intermittent and

practically unpredictable switching under spatiaily periodic pcnurbations of the material

pammeters, as the optical polarization state passes through a homoclinic tangle near the circular

polarization state.

From considerations of the special case in which the Duff’tngequation (2,8) appears, one

could have expected homoclinic chaos to develop for nonlinear optical polarization dynamics,
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Indeed, a related special case is studied numerically in Wabnitz [1987]. As opposed to such

numerical studies, our analytical treatment explores the bifurcations available to the polarization

dynamics under the full range of material parameter variations, demonstrates that the horseshoe

construct is the me. $anism driving the chaotic behavior, and characterizes the location of the

chaotic set, or st~-hastic layer, and the dependence of its width on the material parameters,

modulation frequency, and optical beam intensity.

In the cases under consideration, t!!is stochastic layer is bounded by KAM (Kolmogorov-

Arnold-Moser) curves on the Poincar4 sphere, inside of which the travelling-wave dynamics is

regular and orbitally stable. For a given choice of beam and material parameters, these KAM

curves define phase space regions where chaotic behavior (for example, sensitive dependence on

initial conditions, or orbital instability) may be found, and complementary regions where chaos is

absent and only regular, predictable behavior may be found.

The strong dependence on intensity of the phase-space portraits reported here indicates

that control and predictability of optical polarization in nonlinear media may become an important

issue for future research. In particular, the sensitive dependence on initial conditions in nonlinear

polarization dynamics found here to be induced by spatial inhomogeneities may have implications

for the control and predictability of optical polarization switching in biretkingent media. For

instance, an input-output polarization experiment performed with input conditions lying in the

stochastic layer for some set of material and bean, parameters will show essentially random output

after sufficient propagation length, depending on the amplitude and wavelength of the material

inhomogeneities and the type of (transparent) material used for the experiment.

While in Australia, tile author learned hmm D,J, Mitchell and A. W, Snyder that the

equations studied here also apply to nonlinear directional couplers (Snyder and Love [19831), and

that recent experiments in these couplers alSO show the sensitive intermittent swl!ching effect

explained here in terms of Srnale horseshoe dynamics. See also Snyder et al. [19901,
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